Application Note
Document No.: AN1128

G32R501 Dual-core Emulation Guide

Version: V1.1

CCCCCCCCCCCCC

Document No.: AN1128 i M.ﬁﬁme y

1 Introduction

The G32R5xx dual-core microcontroller (MCU) series is described in Table 1. The applicable
product described in this document (referred to as G32R5xx MCU in this document) is based on
the high-performance Arm® Cortex®-M52 32-bit RISC core. To fully utilize the dual-core
architecture, the G32R501 series MCU requires specific development methods.

This debugging manual provides a guide for debugging custom applications on the G32R501
MCU, and it covers the following aspects:

® Basic principle of debugging G32R5xx dual-core MCU.

® How to use EWARM and MDK-ARM tool chains that support Geehy-Link debugging to
debug dual-core devices.

For more information on the G32R501 MCU, please refer to the following documents:
® (G32R501 Series Datasheet

® (G32R501 Series User Manual

Table 1 G32R5xx Dual-core Models

General series Specific supported product model

G32R5xx G32R501DxCx7/G32R501DxYx7/G32R501DxYx8Q

www. geehy. com Page 1

http://www.geehy.com/

Document No.: AN1128 sk MICGNE:W y

2.1

2.2

4.1

42

5.1

5.2

6.1

6.2

www. geehy. com

Contents
INtrOAUCHIONt e e 1
Basic Mechanism of DUal Cores.............ccocoviiiiiiiii i 3
Functional CharacCteriStiCsoceiiieeee e 3
Debug ACCESS POIT (DAP) ..ottt bt se e 3
Debugging SUPPOI...... ..o e 5
MDK-ARM Dual-core Debugging SUPPOItc.oooiiiiiiiiiiiii e 6
Dual-core Debugging on MDK-ARM ...ttt 6
Steps for Dual-core Debugging Using GEEHY-LINK (WIiNUSB) ..., 6
IAR EW for Arm Dual-core Debugging SUpportcocoiiiiiiiiiiii e, 12
Dual-core Debugging on IAR EW fOr Arm......cooiiii s 12
Steps for Dual-core Debugging Using GEEHY-LINK (WIinUSB) ..o, 12
Eclipse Dual-Core Debugging SUPPOIt.............ccciiiiiii e 18
DUal-Core DebUEZEINE ON ECHPSE...iiiiiiiieiiciieiiieieeereinreee e s e s sesssnteeeesessesssnseseesesssssnssssssssssssssssnsseseseraras 18
Instructions for Dual-Core Debugging Using GEEHY-LINK (WINUSB)vvvviiiiiiiiiiiiiieeeceeceiiieeee e e 18
REVISION ...t e et e e e s e e e e 24

Page 2

http://www.geehy.com/

Document No.: AN1128 sk Mlmegme y

2

2.1

2.2

Basic Mechanism of Dual Cores

A multi-core processor is composed of heterogeneous core (meaning different cores) or
isomorphic (same) core.

The dual cores in G32R5xx are of an asymmetric architecture. By default, CPUOQ is set to
master and can work normally, while CPU1 is set to slave. When the chip starts, CPU1 is set to
hold and its clock is disabled. To make the slave work, CPUO needs to enable its clock through
registers and to set its boot address.

Functional Characteristics

The G32R501 series MCU can provide comprehensive and flexible debugging and
performance analysis support.

® Independent breakpoint debugging: Supports independent breakpoint debugging for
each CPU core in the system, facilitating fine debugging of the multi-core system.

® Code execution tracking: Supports tracking of the code execution process, which is
helpful for performance analysis and debugging.

® JTAG debug port: Provides a standard JTAG debugging interface, compatible with a wide
range of debugging tools.

® Serial wire debug port: Supports Serial Wire Debug Port, to simplify debugging
connection.

Debug Access Port (DAP)
The G32R501 MCU includes four access ports (AP) connected to the debug port (DP):

® AHB-APO: CPUO access port (AHB-AP) provides access to the integrated debugging and
tracing functions in the CPUO core through the AHB-Lite bus connected to the AHBD port
of the processor.

® AHB-AP1: CPU1 access port (AHB-AP) provides access to the integrated debugging and
tracing functions in the CPU1 core through the AHB-Lite bus connected to the AHBD port
of the processor.

® AHB-AP2: Bus matrix access port. Allow access to the system bus matrix.

® APB-AP3: Debug access port. Allow access to external debugging components.

www. geehy. com Page 3

http://www.geehy.com/

Document No.: AN1128

www. geehy. com

Figure 1 G32R5xx Debug Access Port (DAP)

DAP

DP

APB
——| DAPBUSIC

sys bus matrix
p—
CPU1
EE—
CPUO
EEE—
debug components
r——

Page 4

http://www.geehy.com/

Document No.: AN1128 sk Mlmegme y

3

Debugging Support

The dual-core debugging allows the use of a single hardware debugging probe to debug two

cores simultaneously. The debugging information of two cores can be displayed in a single
integrated development environment (IDE) graphical user interface (GUI), or an IDE GUI
instance can be created for each core separately. The performance of the separated IDE GUI
instance is shown in Figure 2.

Figure 2 Dual-core debugging IDE Diagram

APO——— CPUO
IDE . < v
CPUO project
Hardware Debug
» Debug <« » access
probe port
IDE <
CPU1 project QY . B CPU1

To ensure smooth dual-core debugging, the debugger used must provide the following

functions:

® An optional access port.

® The ability to connect multiple cores simultaneously using the same debugging probe.
® Visibility of all cores.

® Support cross triggering Arm® components.

® The possibility of switching access ports between different domains within the same

debugging session to visualize the status of memory and peripheral devices.

www. geehy. com Page 5

http://www.geehy.com/

Document No.: AN1128 sk Mlmegme y

4

4.1

4.2

MDK-ARM Dual-core Debugging Support

The latest version of MDK-ARM can be downloaded from its official website.

Dual-core Debugging on MDK-ARM

As described earlier, the dual-core asymmetric system in G32R5xx requires specific
development tools, and the MDK-ARM IDE v5.40 and above support dual-core debugging of
G32R5xx.

Steps for Dual-core Debugging Using GEEHY-LINK (WinUSB)

This section provides step-by-step instructions for using MDK-ARM v5.40 and GEEHY-LINK
(WinUSB) debugging probes together with G32R5xx MCU.

Note:

The dual-core debugging of Arm® Cortex®-M52 is supported in MDK-ARM v5.40 and higher
versions.

Before performing the following operations, please install the G32R5xx chip support
(Geehy.G32R5xx_DFP.x.x.x.pack).

In this example, a project needs to be created for each core.
(For the example program, refer to G32R5xx_SDK\driverlib\g32r501\examples\evallipc\)
1. Create a new project, and configure debugging settings for CPUO project:

a) Open MDK-ARM and create a new project.

b) Select the correct device, Project — Options for Target — Device, choose the
G32R501(Figure 3) of dual-core series, and select the model with the word "CPUQ" at
the end.

Figure 3 G32R501 MDK Chip Selection (partial)

+ “I G32RI01DNC
+ “I G32R501DNY
+ I G32R501DRC
+ ‘I G32R301DRY
+ I G32R501DVC
- “t§ G32RS01DVY
o
€ G3ZR3I01DVY:CPLA
€1 G32R0IMC

c) Configure the .sct file and select the dual-core configuration.

www. geehy. com Page 6

http://www.geehy.com/

Document No.: AN1128

Figure 4 Use Dual-core Configuration

& g32r501dxc_cpul_chus flash.sct
&8 g32r501dxc_cpul jtem flash.sct
&8 g32r501dxc_cpul_cbus flash.sct
&8 g32r501dxc_cpul_jtem flash.sct
&8 g32r501dxy cpul_chus flash.sct
&8 g32r501dxy cpul jtcm flash.sct
& g32r501dxy_cpul_cbus flash.sct
&0 g32r501dxy cpul_jtem flash.sct

d) Configure the debugger and debugging script: Project — Options for Target — Debug
i. Select the debugger as "CMSIS-DAP ARMv8-M Debugger".

ii. Select the debugging script as “r501_deg.ini”

Figure 5 Configure Debugger and Debugging Script

TE) l B=m] Linker Utilities]

[Use: [CMSIS-DAP ARMvEM Debugg | Settings |

W Load Application at Startup ¥ Run to main{)

||.‘-.r54]1_dbg.ini J Edit

o -~ -~ - e

e) Configure the debugger as GEEHY-LINK.

Figure 6 Select the Debugger as GEEHY-LINK

Debug lTrace] Flash]]ownloadl Pack]

CMSIS-DAP - JTAG/SW Adapter 5W Device
IGeehy CMSIS-DAP WinUSB j IDCODE Device Name

SWDIO | & (x6BA02477 ARM CoreSight SW-DP
Serial No- [00350041500000° @ L J
Firmware Version: |2.1.0 J

Port: [SW - i |

Max Clock: | SMHz - , " " —

-

~

f) Configure the program download method.

www. geehy. com Page 7

http://www.geehy.com/

Document No.: AN1128

Figure 7 CPUO Program Download Configuration

Debug]Trace lPack l

Download Function RAM for Algorithm
LOAD " Eraze Full Chip [w Program
_Fi (* Erase Sectors |V Verfy Start: |{hc21}U{I{I{I'DD Size: |0« 00004000
" Donot Erase [Reset and Run
Programming Algorithm
Description | Device Size | Device Type | Address Range |
G32R%a Program Algarithm B2T352 On-chip Hash QOO00000H - 20307FFFH

2. Create a new project, and configure debugging settings for CPU1 project:

a) Open MDK-ARM and create a new project.

b) Select the correct device, Project — Options for Target — Device, choose the
G32R501(Figure 8) of dual-core series, and select the model with the word "CPU1" at

the end.

Figure 8 CPU1 Project Selection

“T& G32R501DMNC
“I¥ G3I2RS01DNY
“T& (G32R501DRC
*I& G(G32R501DRY
“I& G32R301DVC
=" G32RS01DVY
€3 G32R501DVY:CPUD

2l GR2R501DVY:CPUN

g1 GI2R501MC

c) Configure the .sct file and select the CPU1 configuration.

Figure 9 CPU1 .sct File Configuration

K Options for Target 'g32r501"
Device | Target | Qutput | Listing| User

I Use Memory Layout from Target Dialog
I~ Make RW Sections Position Independent
™ Make RO Sections Position Independent
I™ Dont Search Standard Libraries
[¥ Report ‘might fail" Conditions as Emors

| creer (ace) | asm

1
Debug | Utilities |
/0 Base

RO Base: [B<D0000000
R/W Base |(x20000000

X

Scag‘er ||_\g3275mdxy_cpuﬂ_cbus_ﬂash.sct
e

disable Wamings |
viD Edit

d) Please refer to the previous chapter for debugger configuration.

I D g32r501dxy_cpu0_cbus_flash.sct a

Bpand Al | Collapse Al | Help

Option
= SRAM Configuration
Enable SRAM1
Enable SRAMZ
Enable SRAM3
(=) Stack / Heap Configuration
Stack Size (in Bytes)
Heap Size (in Bytes)
Stack Top Location
(=)~ Code Execution Region Cenfiguration
Code Execution Region
Custom Address Canfiguration

e) The configuration program does not require downloading.

www. geehy. com

[~ Show Grid

Value

2
72

2

00000 1000
00000 1000
DTCM (Defautt)

Flash (Default)

Page 8

http://www.geehy.com/

Document No.: AN1128 stlcoNEmz y

Figure 10 CPU1 Program Download Configuration

Tebug] Trace Flash Dawnload]Pack I

Download Function RAM for Algorithm
LOAD " Erase Ful Chip | Program
;a_ (" Erase Sectors [Verify Start: | 20000000 Size: |eDD00O4000
* Donot Erase |~ Resetand Run

Programming Algorithm

Description | Device Size Device Type Address Range
G32R 5% Program Algorithm BET392 On-chip Flash 00000000H - 20307FFFH

3. Download CPU1 program files using CPUO project.

Since the Flash operations in the downloading process are completed by CPUO, the CPUO
project needs to download the binary files of the programs that CPU1 needs to run through
the CPUO project during compilation.

a) Configure CPU1 project to generate bin files, select Project — Options for Target —
User — After Build/Rebuild, and configure the command for generating bin files.

The example uses:
fromelf.exe --output "..\..\..\cpuO\projectt MDK\cpu1_image.bin" --bincombined "#L"

When using commands, pay attention to the path of the project.

Figure 11 Project—Options for Target—User—After Build/Rebuild

K Options for Target 'g32r501° *
Device] Target] Output] Listing C;’C‘H‘ (AC5)] hsm] Linker I Debug] Utilities
Command ltems User Command . Stopon Exi.. 5.
=|--Before Compile C/C++ File
[~ Run#1 (5] Not Specified [
[~ Run#2 2| Not Specified [
—|--Before Build/Rebuild
[~ Run#1 (3] Not Specified ||
[~ Run#2 (5] Not Specified [
—|-After Build/Rebuild
||7 Run #1 fromelf.exe --output "\ Scpulhproject\MDK\ cpul_image.bin" --bincombined "#L"| |
[Run® [Not Specified || i ‘

b) Call the bin file of the corresponding CPU1 in the CPUO project. The example program
is as follows:

__attribute__ ((__used__, section("cpul_code")))
void G32R501_inchin(void)

{

__asm(".incbin \"cpul_image.bin\"");
}

www. geehy. com Page 9

http://www.geehy.com/

Document No.: AN1128 st M.ﬁgm y

c) If a custom .sct file is used, the user needs to specify the cpu1_code segment in
the .sct file, and the definition of this segment needs to be consistent with the program
space where CPU1 runs.

4. Regarding the example .sct file. The examples .sct used in this chapter are
g32r501dxy_cpu0_cbus_flash.sct and g32r501dxy_cpu1_cbus_flash.sct in
DK\device_support\g32r501\common\sci\.

a) Ing32r501dxy_cpu0_cbus_flash.sct, after dual-core configuration is selected, the
G32R5xx Flash will be divided into two. The location of the cpul_code segment will be
declared.

Figure 12 CPU1 Program Running Segment Settings of .sct in CPUO

A i)
247
245
249
250
251
252

The allocation of Flash for dual-core configuration is as follows:

Table 2 CPUO/1 Running Space Settings

Start address of flash Size Core used
0x08000000 0x050000 CPUO
0x08050000 0x050000 CPU1

b) Ing32r501dxy_cpu1_cbus_flash.sc, the use configuration of Flash corresponds to the
dual-core setting of r501_cpuO_flash_link.sct.

Figure 13 .sct Program Running Segment Settings of CPU1

5. Start dual-core debugging

After completing normal debugger configuration and program compilation correctly, dual-
core debugging configuration can be started.

a) Start CPUO project debugging, and set the breakpoints after setting the statement of
setting CPU1 boot.

www. geehy. com Page 10

http://www.geehy.com/

Document No.: AN1128 sk Mlﬁgme y

Figure 14 CPUO Boot Debugging and CPU1 Boot

(V)
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

=" N~ [E=Y = ™ F = [Device_cal VB e Q- &&= -
e v o OBpBEsa@E B-23-0-8-8-%-
Registers o E Disassembly 2|
Befstis Vel ‘ 19 Interrupt setPriorityGroup (INTERRUPT PRIGRCUP PREEMPT 7 & SUB 5 0):
=l Core

0300000000

/ Set the olobal and orouo prio,

v to allow CPU interrupts

1 ipc_ex1_mailbox_interrupt_cpubic |] main.c -

0x00000000 %gg |
0000000
0%00000000 157
0x00000000 158
000000000 158
0000000 180
181
182
183
164
3 185
= 186
Mode Thread 5T
Privilege Privileged 168
Stack nsE 160
States 3310127566 170
Sec 33101279660
- FEV / WVE LY }Z%

b) Start CPU1 project debugging.

Figure 15 CPU1 Boot Debugging

OxFFFFFFFF 240

OxFFFFFFER 248

249

280

251

282

3 001000021 563
E Internal 254
Mode Handler 255
Privilege Privileged 256

Stack MsE 5T
States 643292630 oES

Sec 64. 32826300 M 250

B FEV f MVE

c) The final effect is shown in Figure 16.

Figure 16 CPUO/1 Debugging Interface

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help File Edit View Projet Flash Debug Peripherals Tools SVCS Window Help
EHdHd =Y = I = ® Device| EHdd =Y - I = @ Interrupt_enab
FEO PO IRBRELE-O-B-N-2-EB- % B0 00F0 | 0BBsaE- O-8-3 08| %
1
Registers 1 B Disassembly Registers 1 B Disassembly
Regiater = 171: fillMsgSend() ; Register [Value 0x0804168E 4770 BX ir
= H = 294: {
oy0x08041690 BOS1 SUB sp, sp, ¥4
Fill the g msaSend ar 1] 0x08041692 F88DO003 STRB x0, [sp, #3]
i 0000000 295: return | ((IFC_COP_READ3Z (IFC_COP_S
- - - | (:c0) 0 0x08041696 EE100118 MRC pl,0,r0,c0,c8,0
0x080032FC] ipc ext mailbox interrupt cpudc | |] mainc | |] 008043134 0x0804169A FOOOOOOF ZND 10,10, $0xE
)i 0x030032FC)3 0:03043134 P (1T ce (mime37 i rvlnmher
k& 0:00000000 R& OxFFFFFFFF €
KT 0x00000000 RT OxFFFFFFFF
b 0x00000000 it OxFFFFFFFF] ipc_ex1_mailbox interrupt cpul.c | |] startup g32r501.c
e 0:00000000 B9 0xFFFFFFFF
R0 0:00000000 R0 OxFFFFFFFF
K1 0x00000000 OxFFFFFFFF
000000000
+-- xFSR 0x61000000 +
) Banked # Banked
=) Internal =l Internal
Mode Thread h
Privilege Privileged inlina bool
Stack MEP 0 f Fm
States 361839381 States 2313780877
Sec 356, 18383510 Sec 231, 37889770
-~ FFU / MVE -~ FFU / MVE

www. geehy. com

Page 11

http://www.geehy.com/

Document No.: AN1128 i Mlﬁgmz y

5

5.1

5.2

IAR EW for Arm Dual-core Debugging Support

The latest version of IAR EW for Arm can be downloaded from the official website of IAR.

Dual-core Debugging on IAR EW for Arm

As described earlier, the dual-core asymmetric system in G32R5xx requires specific
development tools, and the IAR EW for Arm 9.60.2 and above support dual-core debugging of
G32R5xx.

Steps for Dual-core Debugging Using GEEHY-LINK (WinUSB)

This section provides step-by-step instructions for using IAR EW for Arm 9.60.2 and GEEHY-
LINK (WinUSB) debugging probes together with G32R5xx MCU.

Note:

The dual-core debugging of Arm® Cortex®-M52 s supported in IAR EW for Arm 9.60.2 and
higher versions.

Before performing the following operations, please install the G32R5xx chip support
(G32R5xx_AddOn_v1.0.0.exe).

In this example, a project needs to be created for each core.
(For the example program, refer to G32R5xx_SDK\driverlib\g32r501\examples\evallipc\)

The G32R5xx chip does not distinguish between CPUO/CPU1 in the IAR EW for Arm project.
When creating a new CPUO/CPU1 project, you only need to select the dual-core chip.

1. Create a new project, and configure debugging settings for CPUO/CPU1 project:
a) Open IAR EW for Arm and create a new project.

b) Select the correct device, General Options—Target—Device, and select the G32R501
(Figure 17) of dual-core series.

Figure 17 G32R501 IAR Chip Selection (partial)

APM32E1
APM32F0

Geehy 3
¥
APM32F1 ¥
*
*

Generalplus
GigaDevice
HDSC
Hilscher
Haltek
HSXP-HK

Infineon

APM32F4

G32R5 G32R501 > Geehy G32R501DxCx7
Geehy G32R301DxYx7
Geehy G32R501DxYx8Q
Geehy G32R501xCx7

Geehy G32R501xYx7

P W v v W e w v e

Lapis

c) Configure the .icf file and select the dual-core configuration. Please select different .icf
files for different CPU projects. For example, the configuration file for CPUO is
“g32r501dxy_cpu0_cbus_flash.icf”.

www. geehy. com Page 12

http://www.geehy.com/

Document No.: AN1128

Runtime Checking
C/C++ Compiler
Assembler
Output Converter
Custom Build
Build Actions
Debugger

Simulator
CADI
CMSIS DAP
E2/E2 Lite

d)

e) Configure the simulator and boot address:

www. geehy. com

Figure 18 Use Dual-core Configuration

#define
Config

Diagnostics Checksum Encodings

Library Input Optimizations Advanced

Linker canfiguration file

Override default

Extra Options
Output

g32r501dxc_cpul _cbus flash.icf
g32r501dxc_cpul_item_flash.icf
g32r301dxc_cpul_cbus flash.icf
g32r501dxc_cpul_item_flash.icf
g32r501dxy_cpul _cbus _flash.icf

List

$PROJ_DIR$\g32r501dxy_cpul_cbus flash.icf

g32r501dxy_cpul_item_flash.ic

Edit...

g32r501dxy_cpul_cbus _flash.icf
g32r501dxy_cpul_item_flash.icf

Configure CPUOQ project to include the CPU1 running image: Linker — Input,

Set to keep compiling without optimizing “ipc_cpu1_image”.

Load the bin file path and related configuration.

Figure 19 Use Dual-core Configuration

Options for node "project”

Categany:

General Options ~
Static Analysis
Runtime Chedking
C/C++ Compiler
Assembler
Output Converter
Custom Build

#define
Config

Diagnostics

Library Input

Keep symbols: (one per line)

Checksum

Optimizations

Build Actions

Debugger
Simulator
CADI
CMSIS DAP
E2fE2 Lite
GDE Server
GHINK
T§et
Iink/31-Trace
TI Stellaris
Nu-Link

_ipc_cpul_image

PE micro

ST-LINK Raw binary image

Third-Party Driver File:

TIMSP-FET W

| $PROJ_DIR$\cpul_image.bin

File:

Factory Settings

Encodings Extra Options
Advanced Output List
Symbol: Section: Align:
|_ipc_cpu _cpulr
Symbol: Sechion: Align:

Both CPUO and CPU1 projects require it; select the debugger "CMSIS-DAP":

Debugger— Setup.

Configure boot address for CPUOQ project: Debugger — Extra Options — check
"Use command line options" — enter in the text box:

“--macro_param _SET_PC_BOOTADDR=0x08000000". Note that the address
here needs to correspond to the actual boot address of CPUO.

Page 13

http://www.geehy.com/

Document No.: AN1128

Figure 20 Configure Boot Address for CPUO Project

Runtime Checking
C/C++ Compiler
Assembler
Output Converter
Custom Build
Linker
Build Actions

Simulator
CADI
CMSIS DAP

Setup Download

Authentication

Use command line options

Command line options: (one per

Extra Options

Images Multicore

Plugins

f) Configure CPUO project simulation AP port: CMSIS DAP—Interface—Probe config,
select “From file”— select “CM52_0" according to CPU.

Figure 21 Configure CPUO/CPU1 Project Simulation AP Port

Optians for node "project”

Category:

Static Analysis

Runtime Checking
C/C++ Compiler
Assembler
Output Converter
Custom Build
Linker
Build Actions
Debugger

Simulator

CADL
E2JE2 Lite
GDE Server

General Options ~

Setup Interface Breakpoints

Probe config Probe configuration file

Factory Settings

O Auto Override default
@ From file |$TDDLKIT7DIR$fcunﬂgfdebuggerfﬁeehyfﬁ‘
xplicit E - elect
O Explici CPU: |EM520 Sel
Interface Explicit probe configuration M52 0
) cM52_1
OITAG Multi-target debug system

g) Configure CPUO project to link CPU1 project. After the basic configuration of each

project has been completed, CPUO project can be used to link CPU1 project, so that

the simulation of the two projects can be started simultaneously when starting the

simulation.

Configuration process: Debugger—Multicore—Asymmetric multicore, check
“Simple”—Select the file for CPU1 project at the Partner workspace—Fill in the CPU1
project name at the Partner project—Fill in the project tag that needs to be placed at

the Partner.

The specific configuration is shown in the following figure.

www. geehy. com

Page 14

http://www.geehy.com/

Document No.: AN1128

Figure 22 Configure CPUO project to link CPU1 project

Runtime Checking
C/C++ Compiler
Assembler
QOutput Converter
Custom Build
Linker
Build Actions

Simulator
CADL

CMSIS DAP
E2[E2 Lite
GDB Server
GHINK

Iget
JHink/3-Trace
TI Stellaris
Nu-Link

PE micro
ST-LINK
Third-Party Driver

Authentication

Setup Download

Symmetric multicore

Number of

Asymmetric multicore

() Disabled

Extra Options

Images

L]

Plugins
Multicore

TI MSP-FET ~

(®) Simple

Partner workspace:

Bl cpul\project\|AR\project.eww

Partner project: |project

Partner

|G32R501

[A Attach partner to running target

Partner cores:

|
|
[

2. Additional settings for CPU1 project:

a) Refer to the previous content to complete the correct chip selection, icf file settings,
and simulation settings.

b) Configure the output bin file to the specified directory (which needs to be consistent
with the path of configuring CPUO to include the CPU1 running image).

Figure 23 Configure the output bin file of CPU1 project to specified directory

Runtime Chedkng
C/C++ Compiler
Assembler
Custom Build
Linker
Build Actions
Debugger

Simulator
CADI

CMSIS DAP
E2/E2 Lite
GDE Server
GHINK

Ijet
inkf1Trars

Output

Generate additional output

Qutput format:

Raw binary w

Output file

Override default

| e \cpuliprojecty | ARVcpul_image.bin |

¢) Configure CPU1 project simulation AP port: CMSIS DAP—Interface—Probe config,
select “From file”— select “CM52_1" according to CPU.

d) The CPU1 project does not require additional configuration to not reset the MCU
during simulation connection: CMSIS DAP — Setup — Disabled (no reset).

Figure 24 Not Resetting MCU When Configuring CPU1 Connection

Swaus e
Runtime Checking
C/C++ Compiler
Assembler
Output Converter
Custom Build
Linker
Build Actions
Debugger
Simulator
CADI

www. geehy. com

Setup Interface Breakpoints

Reset

System (default)

Software

Hardware

Core
System (default)

[PIWaYs prompt Tor

Page 15

http://www.geehy.com/

Document No.: AN1128 sk MICGNE:W y

3. Regarding the example .icf file. The examples .sct used in this chapter are
g32r501dxy_cpuQ_cbus_flash.icf and g32r501dxy_cpu1_cbus_flash.icf in
SDK\device support\g32r501\common\icf\.

a) Ing32r501dxy_cpu0_cbus_flash.icf, after dual-core configuration is selected, the
G32R5xx Flash will be divided into two. In addition, the location of the cpul_image
segment will be declared.

Figure 25 CPU1 Program Running Segment Settings of .icf in CPUO

g32r501dxy_cpul_cbus_flash.icf x

// Required in a multi-threaded application
initialize by copy with packing = none { section _ DLIB_PERTHREAD };
}

place at address mem:_ ICFEDIT_intvec_start_ { readonly section .intvec };

place in CBUS_FLASH_region { readonly };

place in CPU@_ITCM_RAM region { section itcm.instruction, section itcm.ramfunc };

place in CPU@ DTCM_RAM_region { section dtecm.data, section dtom.bss, block CSTACK, block HEAP };
place in SRAMl_region { section sraml.share_data };

place in SRAM2 region { section sram2.share_data };

place in SRAM3_region { section sram3.share_data };

place in RAM region { readwrite };
place in m { section _ cpul image };

For the allocation of Flash for dual-core configuration, refer to Table 2 CPU0/1 Running Space
Settings.Table 2 CPUO/1 Running Space Settings

4. Start dual-core debugging

After completing normal debugger configuration and program compilation correctly, dual-
core debugging configuration can be started.

a) Starting CPUO project debugging will directly start two CPU. After starting the
debugging window, two debugging windows can be seen:

i. At this point, set a breakpoint after starting the CPU1 program in the CPUQO
project, and run the program to this breakpoint. At this point, the CPU1 project will
be able to connect to CPU1 normally.

ii. After the CPU1 project is connected normally, please press its project "Reset"
button to return the CPU1 project to its start address.

iii. Subsequently, dual-core simulation can be made as needed.

www. geehy. com Page 16

http://www.geehy.com/

Document No.: AN1128

>

Figure 26 |IAR Dual-core Simulation Debugging Interface

File E0f View Projet Debug Disassembly CMSIS-DAP Tools Window Hew

iho@e & KD DC

25 Q2 SECD >N RS

Wo- G- s e

> preject - Partner 1 - IAR Embedded Workbench IDE - Arm 8.60.2
File Edt View Projed Debug Disasembly CMSSDAP Toos Windaw Help

DARE & L0 DC rEJEe

AT TR

[3 S

o (W v ax =y .
B = il = x o Workspace = 8 X [T5cea mamopaming urc | midic | ph | mame | artup gz
o | azamn .| |example_main]) nle
& | Files o Soard_tnit (3 N 77 that it will be useful ond instructional for customers to develop i
o @ project - G32RSOL . L - 7/ their software. Uniess required by applicable Law or ogreed fo in £
L, 4/ Enables CPU interrupts 4/ witing, the progrom is distributed on an "AS IS" BASIS, WITHOUT
e e -2 i device 47 ANY WARRANTY OR CONDITIONS OF ANY KIND, either express or implied.
A errupt enshlemsster(}; - // See the GEEWY SOFTIARE PACKAGE LICENSE for the governing permissions
fokerrupt_ensbletiaster): 2 Sariverit 7/ and Limitations under the License.
" e
| La Eﬁff’m"m'ﬁ”m - 7T dnietat e -8 B ipe_ex2_mailtiox_polin...
L i output BART_Tnit ()5 Lo @ mam.c #inelude “deviee.h”
77 cPw print infornation . .
printf("\r\nIFC mailbox polling example.\rin"); x"‘““: fame 2 :’:-" - " .
printf("CPUL boot address: @uk#Bx, CPUL imsge file size: Gl byte.\r\n", cpul_imag weription ; Main fecilon of this progrom y
L int nain()
- H
7 soar et example_main();
RR_boatCRUL (cpul_insgeStartadde) return 1
" i
74 clear the g msgrecw array before receive .
©| g end of fie
T P P —— - -
proiect ‘ » proiect « v
e v o x| Faultexception iewer cax

www. geehy. com

Page 17

http://www.geehy.com/

Document No.: AN1128

6 Eclipse Dual-Core Debugging Support

The latest version of Eclipse can be downloaded from the official Eclipse website.

Note: The debugging method described in this chapter uses pyOCD+GEEHY-LINK for debugging.

6.1 Dual-Core Debugging on Eclipse

Follow the instructions in the "AN1126 G32R501 Instructions for Use of G32R501 IDE and Tool
Chain" to enable pyOCD support for the G32R501 series chips.

6.2 Instructions for Dual-Core Debugging Using GEEHY-LINK

(WinUSB)

This section provides a step-by-step guide for working with Eclipse and GEEHY-LINK

(WinUSB) on the G32R5xx microcontroller.

In this example, a separate project needs to be created for each core.

(Example programs can be found at G32R5xx_SDK\driverlib\g32r501\examples\eval\ipc)

1. Import the projects, and after ensuring successful compilation, configure the debug tabs as

follows:

® Create a new debug configuration

1)
2)
3)

4)

www. geehy. com

Left-click the Debug icon to open the Debug configurations.
Select “Debug Configurations...” from the menu.

In the new window, right-click “GDB pyOCD Debugging.”

Select “New Configuration” to create a new debug configuration.

Figure 27 New Configuration

- ﬁ'&"d'%'@b v T

(no launch history)

Debug As >
Debug Configurations... o

Organize Favorites...

[t] GDB OpenQCD Debuggina L - Sel
J{ [E] GDB PyOCD Debugging | .
[c| led_ex1 blinky G32R501 | MNew Configuration | o
[t] GDB QEMU aarché4 Debug New Prototype
[t] GDB QEMU arm Debugging _ Export..
[£] GDB QEMU gnuarmeclipse Duplicate
[£] GDB QEMU riscv32 Debuge Delete
[c] GDEB QEMU riscvb4 Debuge
v [] GDB SEGGER J-Link Debug Link Prototype...
] Fix32math_sample G32R! Unlink Prototype

Page 18

http://www.geehy.com/
AN1126_G32R501%20Instructions%20for%20Use%20of%20G32R501%20IDE%20and%20Tool%20Chain%20V1.1.pdf
AN1126_G32R501%20Instructions%20for%20Use%20of%20G32R501%20IDE%20and%20Tool%20Chain%20V1.1.pdf

Document No.: AN1128

® Configure the Main tab
1) Name the current debug configuration at the top.

2) Click “Browse...” to select the project corresponding to the current debug
configuration.

3) Select the corresponding debug elf file, for example:
G32R50MN\ipc_ex2_mailbox_polling_cpu0.elf. The example uses a relative path to
the project file but absolute paths are also supported.

Figure 28 Configure Main

uame:” ipc_ex2_mailbox_polling_cpul G32R501 |

[El Main| %% Debugger| = Startup | % Source | [Common| 2. SVD Path

Project:
|ipc_ex2_mai|box_poIIing_cpuO || Browse... |

C/C++ Application:

|| G32R5D'I\ipc_exE_mailbox_polling_cpuD.elf|

Variables... Search Project... Browse...

® Configure the Debugger tab
1) Disable the setting for launching the pyOCD GDB Server by Eclipse.

2) Set the GDB Client to connect to the appropriate core ports. The default ports are
usually: core 0: 3333, core 1: 3334.

www. geehy. com Page 19

http://www.geehy.com/

Document No.: AN1128

Figure 29 Dual-Core Simulation Debugger Tab

Name: [ipc_ex2_mailbox_polling_cpu0 G3ZR501

[5) Main | %5 Debugger| b Startup | 1 Source | [Common| 2, SVD Path
I

[Start pyOCD locally o

Allocate console for pyOCD

Allocate console for semihosting

Debug probe: <Please select a debug probe>
Default target:

Override target:

Bus speed: 1000000 Hz

Connect mode: Halt

Reset type: Default

Flash mode: Sector erase Smart flash
Halt at hard fault Step into interrupts
Enable semihasting Use GDB syscalls for semihosting

Executable path: | C:\Users\apexB00691\AppData\Local\Programs\Python)\Python313\Scripts\pyocd.exe
Actual executable: | C:\Users\apex800691\AppData\Local\Programs\Python\Python313\Scripts\pyocd.exe

{to change it use the global or workspace preferences pages or the project properties page)

Other options: —-script EAGIT\G32R501\g32r501_v0.6\driverlib\g32r501\examplesievallediled_ex1_blinky\project\Eclipse\pyocd_user.py

GDB Client Setup

Executable name: [CAGCC\10 2021.10\bin\arm-none-cabi-gdb.exe

Actual executable: | CAGCCY10 2021.10\bin\arm-none-eabi-gdb.exe

Other options: ‘target remote localhost:3333 o

Commands: set mem inaccessible-by-default off

Remote Target

Host name or P address:
Port number: 3333

® Configure the Startup tab

cpu0: The CPUO Startup tab follows the single-core configuration as detailed in the
"AN1126_G32R501 Instructions for Use of G32R501 IDE and Tool Chain".

cpul:

1) Inthe commander tab, remove the decryption sequence, leaving only the PC
setup commands. (Note that the start address of the cpu1 program must be

modified. The example uses 0x08050000.)

set $t0 = *(unsigned int *)0x08050000
set $sp=$t0
set $t1 = *(unsigned int *)0x08050004
set $pc=5t1

set $xpsr=$xpsr|(1<<24)

2) Uncheck “Load executable”.

www. geehy. com

Page 20

http://www.geehy.com/
AN1126_G32R501%20Instructions%20for%20Use%20of%20G32R501%20IDE%20and%20Tool%20Chain%20V1.1.pdf

Document No.: AN1128

Figure 30 Startup Tab

Name: | ipc_ex2_mailbox_polling_cpul G32R501

[Main | %5 Debugger | B Startup| %~ Source | [C] Common | 2, SVD Path
Initialization Commands

~
set $t0 = *(unsigned int *)0x08050000 A
set $sp=$10
set $t1 = *(unsigned int *)0x08050004
R e &
Load Symbols and Executable

[Load symbols
(®) Use project binary: ipc_ex2 mailbox_polling_cpul.elf

() Use file:

Workspace... | File System...
Symbaols offset (hex):

| [JLoad executable |9

Use project binary: ipc_ex2_mailbox_polling_cpul.elf

Use file: Workspace... | File System...
Runtime Options
[]Debug in RAM
Run/Restart Commands
[]Pre-run/Restart reset Type: | halt
set $t0 = *(unsigned int *)0x08050000 A
set $sp=$10
set $t1 = *(unsigned int *)0x08050004
A S e &
[set program counter at (hex):
Set breakpoint at:
Continue

Restore defaults ¥

2. Start the pyOCD gdbserver from the terminal with the command:

pyocd gdbserver

® The directory where pyOCD gdbserver is started should contain the following files:

1) pyocd.yaml, the dual-core version, refer to
SDK/device_support/g32r501/common/pyOCD/

target_override: g32r501dxx

frequency: 8000000 # Set 8 MHz SWD default for all probes

session:

enable_multicore_debug: true

persist: true

2) pyocd_user.py, refer to SDK/device_support/g32r501/common/pyOCD/

www. geehy. com

Page 21

http://www.geehy.com/

Document No.: AN1128 sk Mlmegme y

Figure 31 Terminal Start pyocd gdbserver

[rom_

[rom_

[rom_

3. Start two debug sessions in Eclipse separately.

® | aunch debugging for the CPUO project and set a breakpoint after the statement that
starts CPU1. In the example, set the breakpoint after the statement
APP_bootCPU1(cpu1_imageStartAddr);

® |aunch debugging for the CPU1 project.
® Perform dual-core debugging as needed.
1) Click the thread corresponding to cpuO to control cpuQ simulation.

2) Click the thread corresponding to cpu1 to control cpu1 simulation.

www. geehy. com Page 22

http://www.geehy.com/

Document No.: AN1128

Geeh

SEMICONDUCTOR

Figure 32 Eclipse Simulation Debugging Interface

© Eclipse AutoBuld Workspsce - ipc_ex!_mailbox interrupt cpulfuser/ipe.ex]_maibo nterrupt cpul.c - Edipse IDE

- 8 x
Fle St Souce Refacior Navigmte Search Project Run Window Help
o Bl - Q n|®>imia = LB~ 0-Q- &> videifi-Fl-CrEe>- Q @# R
1 Debug X_ i Project Explorer & P=oi- _— 3 —— e wVar. X %oBr. fEx. Hrer. =0
[Emeine (@ pe.en malbox interrupt cpude X mene @ ipe_ex]_mailbox mermupt cpule X S
5] ipc_ox1_mailbox interrupt_cpud GI2R501 [GOB OpenOCD Debuggingl gty e e bt Tm,., - - LEEe| e b
v B ipc_ex)_madbox interrupt cpudielf = % void UART_Init(void) Type
Yo Gk mled Bt > w22 ¢
crue print inforsat !
mailbon. i B - cpul imsgeStanaddr uin32 t
E i) a 40 0005 printf(“\r\n5C mailbox interrupt emle. vy 2 /1 natn
& arm-none-sabi-gdb.exe printf("CPUL boot sddress: @ABSX, CPUL imsge file size: @Ak byt
] ipe_ex)_malbox_interrupt cpu1 G3ZR501 [GOB OpanOCD Debuggingl oy e
v B ipe.ox)_maibox interrupt cpul. el soot cPu1
P Thread 211 (Thewad) (uspanded : Stp) / lize device clock
el o e b bt 104 AU 307 ek cpu_ogesearedin) e
) ot 40 OWB050822 _init();
18 arm-cone-eabi.-gdb.exe srray before receive
Ctalize WIC and clears WVIC
nterrupt_inithodule();
P11 the g asgsend or
7 tnitislize the WIC vector table with pointers to the shell In
Cleargiecy(); Service foutines (150)
Interrupt_initvectorTable();
Intecrupts hat are used bn this exenple are re-sagped to
S0 Functions found within this 1
registers ust handler in WWIC vector teble Bosrd Initialization
Interrgt_reglater (1T 1oC.o8 e, 11 tro Tl s oard_init();
9 Interrupt_register (INT_IPC_COP_TEQ, BINT_IPC_T = 16
a 1 intermupts
1 Set the priority group to indicate the PREBRT ond SUB prigeti
1 Interrupt_enabletmster();
2 Interrupt_setbriocityGroup(INTERRUPT_PRIGROUP_PREEHPT 7 6 Su8 5 Min < >
. group prioeity to allow U interrupts 24
16 priority S AT Ieit();
1o Interrugt_serioeity(O_TC o 2
10 erprion T Cor TES, 2, 1)) 12 /1 U1 print tnformation
21 50 printf("CPUL has completed booting.\r\n");
Enable the TPC WIC taterrupt s
Interrupt_ensble (INT_TPC_COP_8F0) 3 Clear the gasgecy aeray befare receive
Tnterrupt_ensble (INT_IPC_C0P_TEO) u
L B Qumepean: I
« > i >
© Comsole X iR £ s @ Debugger Comole B Memory O Exccutables xsv@agEa@re-n-=0
COT 8ld Console lpe oxt malbex nterrupt cout]
o o s By scson s o proyecT TP _exI_WaXIDON_AnSerrupE <pu =
sske o
nking: o are croce oo s1ze
restoberkeley “ioc_extmsilbox interruptcput. 1"
om wu b Filensee

www. geehy. com

172 6ede dpc_ex)_mailbax_interrupt_cpul.elf
Finished butlding: ipe et madibox interropt cpinsis

Ilvm-objcopy -0 binary “ipc_ex1_mailbox_interrupt_cpul.elf* *../../../../cpub/project/Eclipse/coul_inage.bin";

11:09:49 8uild Finished. ® errors, & wernings. (took 25.348ms)

1lvm-objdump -0 "ipc_ex1_mailbox_interrupt_cpul.elf” >

“ipc_ex1_nailbox_interrupt_cpul.dusp

Page 23

http://www.geehy.com/

Document No.: AN1128 sk Mlmegme y

7 Revision

Table 3 Document Revision History

Date Version Change History
January 2025 1.0 New
April 2025 1.1 Add the new section about Eclipse dual-core debugging support.

www. geehy. com Page 24

http://www.geehy.com/

Document No.: AN1128 sk Mlmegme y

Statement

This document is formulated and published by Geehy Semiconductor Co., Ltd. (hereinafter
referred to as “Geehy”). The contents in this document are protected by laws and regulations of
trademark, copyright and software copyright. Geehy reserves the right to make corrections and
modifications to this document at any time. Read this document carefully before using Geehy
products. Once you use the Geehy product, it means that you (hereinafter referred to as the
“users”) have known and accepted all the contents of this document. Users shall use the Geehy
product in accordance with relevant laws and regulations and the requirements of this

document.
1. Ownership

This document can only be used in connection with the corresponding chip products or
software products provided by Geehy. Without the prior permission of Geehy, no unit or
individual may copy, transcribe, modify, edit or disseminate all or part of the contents of this

document for any reason or in any form.

The “tiifF” or “Geehy” words or graphics with “®” or “™” in this document are trademarks
of Geehy. Other product or service names displayed on Geehy products are the property of

their respective owners.
2. No Intellectual Property License
Geehy owns all rights, ownership and intellectual property rights involved in this document.

Geehy shall not be deemed to grant the license or right of any intellectual property to users

explicitly or implicitly due to the sale or distribution of Geehy products or this document.

If any third party’s products, services or intellectual property are involved in this document,
it shall not be deemed that Geehy authorizes users to use the aforesaid third party’s products,
services or intellectual property. Any information regarding the application of the product, Geehy
hereby disclaims any and all warranties and liabilities of any kind, including without limitation
warranties of non-infringement of intellectual property rights of any third party, unless otherwise

agreed in sales order or sales contract.
3. Version Update

www. geehy. com Page 25

http://www.geehy.com/

Document No.: AN1128 sk Mlmegme y

Users can obtain the latest document of the corresponding models when ordering Geehy

products.

If the contents in this document are inconsistent with Geehy products, the agreement in the

sales order or the sales contract shall prevail.
4. Information Reliability

The relevant data in this document are obtained from batch test by Geehy Laboratory or
cooperative third-party testing organization. However, clerical errors in correction or errors
caused by differences in testing environment may occur inevitably. Therefore, users should
understand that Geehy does not bear any responsibility for such errors that may occur in this
document. The relevant data in this document are only used to guide users as performance

parameter reference and do not constitute Geehy’s guarantee for any product performance.

Users shall select appropriate Geehy products according to their own needs, and
effectively verify and test the applicability of Geehy products to confirm that Geehy products
meet their own needs, corresponding standards, safety or other reliability requirements. If
losses are caused to users due to user’s failure to fully verify and test Geehy products, Geehy

will not bear any responsibility.
5. Legality

USERS SHALL ABIDE BY ALL APPLICABLE LOCAL LAWS AND REGULATIONS WHEN
USING THIS DOCUMENT AND THE MATCHING GEEHY PRODUCTS. USERS SHALL
UNDERSTAND THAT THE PRODUCTS MAY BE RESTRICTED BY THE EXPORT, RE-
EXPORT OR OTHER LAWS OF THE COUNTRIES OF THE PRODUCTS SUPPLIERS,
GEEHY, GEEHY DISTRIBUTORS AND USERS. USERS (ON BEHALF OR ITSELF,
SUBSIDIARIES AND AFFILIATED ENTERPRISES) SHALL AGREE AND PROMISE TO ABIDE
BY ALL APPLICABLE LAWS AND REGULATIONS ON THE EXPORT AND RE-EXPORT OF
GEEHY PRODUCTS AND/OR TECHNOLOGIES AND DIRECT PRODUCTS.

6. Disclaimer of Warranty

THIS DOCUMENT IS PROVIDED BY GEEHY "AS IS" AND THERE IS NO WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, TO
THE EXTENT PERMITTED BY APPLICABLE LAW.

www. geehy. com Page 26

http://www.geehy.com/

Geehy

SEMICONDUCTOR

GEEHY'S PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED FOR
USE AS CRITICAL COMPONENTS IN MILITARY, LIFE-SUPPORT, POLLUTION CONTROL,
OR HAZARDOUS SUBSTANCES MANAGEMENT SYSTEMS, NOR WHERE FAILURE
COULD RESULT IN INJURY, DEATH, PROPERTY OR ENVIRONMENTAL DAMAGE.

IF THE PRODUCT IS NOT LABELED AS "AUTOMOTIVE GRADE," IT SHOULD NOT BE
CONSIDERED SUITABLE FOR AUTOMOTIVE APPLICATIONS. GEEHY ASSUMES NO
LIABILITY FOR THE USE BEYOND ITS SPECIFICATIONS OR GUIDELINES.

THE USER SHOULD ENSURE THAT THE APPLICATION OF THE PRODUCTS
COMPLIES WITH ALL RELEVANT STANDARDS, INCLUDING BUT NOT LIMITED TO
SAFETY, INFORMATION SECURITY, AND ENVIRONMENTAL REQUIREMENTS. THE USER
ASSUMES FULL RESPONSIBILITY FOR THE SELECTION AND USE OF GEEHY
PRODUCTS. GEEHY WILL BEAR NO RESPONSIBILITY FOR ANY DISPUTES ARISING
FROM THE SUBSEQUENT DESIGN OR USE BY USERS.

7. Limitation of Liability

IN NO EVENT, UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL GEEHY OR ANY OTHER PARTY WHO PROVIDES THE DOCUMENT AND
PRODUCTS "AS IS", BE LIABLE FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
DIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE DOCUMENT AND PRODUCTS (INCLUDING BUT NOT LIMITED TO
LOSSES OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY USERS OR THIRD PARTIES). THIS COVERS POTENTIAL DAMAGES TO PERSONAL
SAFETY, PROPERTY, OR THE ENVIRONMENT, FOR WHICH GEEHY WILL NOT BE
RESPONSIBLE.

8. Scope of Application

The information in this document replaces the information provided in all previous versions

of the document.

© 2025 Geehy Semiconductor Co., Ltd. - All Rights Reserved

Geehy Semiconductor Co.,Ltd. & +86756 6299999 @ www.geehy.com [infoageehy.com

http://www.geehy.com/

	1 Introduction
	2 Basic Mechanism of Dual Cores
	2.1 Functional Characteristics
	2.2 Debug Access Port (DAP)

	3 Debugging Support
	4 MDK-ARM Dual-core Debugging Support
	4.1 Dual-core Debugging on MDK-ARM
	4.2 Steps for Dual-core Debugging Using GEEHY-LINK (WinUSB)

	5 IAR EW for Arm Dual-core Debugging Support
	5.1 Dual-core Debugging on IAR EW for Arm
	5.2 Steps for Dual-core Debugging Using GEEHY-LINK (WinUSB)

	6 Eclipse Dual-Core Debugging Support
	6.1 Dual-Core Debugging on Eclipse
	6.2 Instructions for Dual-Core Debugging Using GEEHY-LINK (WinUSB)

	7 Revision

